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The statistical thermodynamics of adsorption from multicomponent, liquid
mixtures on heterogeneous solid surfaces is discussed by assuming the cell
adsorption model and ideal adsorbed phase.

Two integral representations for the adsorption isotherm are proposed: one
based on n-dimensional energy distribution function (i.e., each adsorption site
is characterized by adsorption energies of all components), and the other based
on distribution of differences of adsorption energies of n-1 components in
relation to adsorption energy of the chosen component (i.e., each adsorption
site is characterized by n-1 differences of adsorption energies of the components
in relation to adsorption energy of the chosen component).

The expressions for differential adsorption heat for adsorption from binary
liguid mixtures have been derived from both integral equations.

( Keywords: Adsorption from solutions; Adsorption on heterogeneous surface;
Statistical thermodynamics)

Statistische Thermodynamik der Adsorption aus flissigen M ehrkomponenten-
mischungen auf heterogenen festen Oberflichen

Die statistische Thermodynamik der Adsorption von aus mehreren Kom-
ponenten bestehenden flissigen Mischungen auf heterogenen festen Ober-
flichen wird fir das Modell der Zellenadsorption bei ideal adsorbierter Phase
diskutiert.

Zwei Integraldarstellungen der Adsorptionsisotherme werden vorgeschla-
gen: eine auf eine n-dimensionale Verteilungsfunktion der Energie gestiitzte
(das heifit, jede Adsorptionsstelle wird durch Adsorptionsenergien von allen
Komponenten charakterisiert); die andere basiert auf der Verteilung der
Unterschiede von Adsorptionsenergien der n—1-Komponenten in bezug auf die
Adsorptionsenergie der ausgewéhlten Komponente (das heifit, jede Adsorp-
tionsstelle wird durch n—1-Unterschiede charakterisiert. Formeln fiir differen-
tiale Adsorptionswirmen fiir die Adsorption aus bindren fliissigen Mischungen
sind von beiden Integral-Gleichungen abgeleitet worden.
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Introduction

In the majority of the theoretical papers concerning adsorption
from liquid mixtures, homogeneity of the adsorbent surface has been
assumed. Also the classical’™® and statisticalé—® thermodynamics of
adsorption from solution was formulated for homogeneous adsorbentes.

Numerous experimentali® 1l and theoreticall218 gstudies have
shown that heterogeneity effects play an important role in adsorption
from liquid mixtures. Delmas and Patterson®, Siskova and Erdis?0.21
~ saw in the surface heterogeneity of the adsorbent a source of imperfec-
tion of surface phase. They suggested that the change of the sign of the
excess adsorption isotherm should be associated with surface hetero-
geneity. Theoretical description of adsorption from binary liquid
mixtures on heterogeneous surface, presented in the papersi2—18, bases
on an integral equation for the excess or individual adsorption isotherm
which was similar to the fundamental integral equation used in the
theory of gas adsorption.

In this paper, the integral equation will be discussed in detail in
terms of the statistical thermodynamics. Also, the differential heat for
adsorption of binary mixtures on heterogeneous surfaces will be
derived. The starting point of these considerations is the paper of Sircar
and Myers?, which deals with statistical thermodynamies of adsorption
from liquid mixtures on homogeneous surfaces. Similarly as Sircar and
Myers? we assume the cell model for adsorption of binary liquid
mixtures on solids and ideality of the adsorbed phase.

Results and Discussion
Adsorption from Binary Liquid Mixtures on Solid Surfaces

The canonical partition function for two-component adsorbed phase
on a homogeneous surface may be written as follows?:

M!

_ N, M—N,
S AT ATk ()
where
By
=J (T)exp| —— 2
g =Jp (1) p<k8T> (2)
and
M = N; + Ny = const (3)

In the above equations M is constant and it denotes the total number of
molecules in the adsorbed phase; N}, is the number of molecules of the
k-th component in the adsorbed phase; E; and J are adsorption energy
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and partition function of the isolated adsorbed molecule of the k-th
component, respectively; kp is the Boltzman constant, and 7' is the
absolute temperature. Eq. (1) refers to liquid mixtures composed from
molecules of equal sizes.

At equilibrium the difference of chemical potentials in the adsorbed
phase is equal to the difference of chemical potentials in the bulk phase.
Taking into account this condition and calculating from Eq. (1) the
difference of chemical potentials in the adsorbed phase, we obtain

2 = Kip a5 (4)
! 1 + K12 Q1o
where
D) By
Ky = =Ape 5
12 = q12 €Xp (kBT> 12 €Xp <k3T> (5)
and
12
Ay = Jip €xp ( > (6)
kpT

In the above ayy = a;/a, is the ratio of activities a; and as, 2] is the mole
fraction of the ¢-th component in the adsorbed phase, ¢10 = ¢1/¢s,
J1s = Jy/J5 and piy is the difference of the standard chemical potentials
in the bulk solution. If the activity coefficients f, = 1 (k = 1,2), Eq. (4)
assumes the well-known form:

Kiory2

= (7)
1+ Kipapp

%
where x5 = x,/2, is the ratio of mole fractions of both components in
the bulk phase.

In the general theory of adsorption of binary mixtures on heteroge-
neous surface, each adsorption site is unambiguously characterized by
two energies: ) ;; and By ;2.

Let M;; = M,y 45 + M, ;; denote the number of the sites having the

adsorption energies B 4 and Ey 4, and Y, M;; = Ny + Ny = M is num-

. a .
ber of molecules in the adsorbed phase, which assumed to be constant.
Moreover N; ;; and N, ;; are assumed to be large numbers. For any
distribution Ny 4, Ny ;; among My; we have?3, 24

QNl,ijN2,ij =

]
_ Mz]~ Ny LM¢j~Nl,ij (8)
Nyl (My— Ny gyt 107 %2
g V! (My— DNy g)!
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where

Ek,r
e = Ji (T) exp <kBT> 9)
fork=1,2 an_d r = 1,J, respectively.

The total partition function € is the sum of the partition functions
@y ijNo 15 Replacmg this sum by the maximum term?2, we can express
the difference of chemical potentials of both components ps,; 4 for
molecules occuping adsorption sites M;; as follows:

U2 _ ‘< 6an> = n————Nl’“ T2.7 (10)
kgT 0Ny 4 My T (Ma—DNyg) @,
At equilibrium, i.e., when “‘512?1']‘ = 1, We obtain
Ky 0
xiij _ 12,4 Y12 (11>
Y1+ K019
where
215 = N1,is/Na (12)
and
(12
Ko 55 = (q1,i/92,5) exp <kBT> =
By —Es (El-z o
=A — ) =A, e . 13
129XP< ey T 12 Xp lpT (13)
For the whole adsorbent surface we get
zio= Ny M = YNy g M =Yg (14)
i i
where
g5 = My M (15)

s s
and zy, + %5, = 1.

Generalized Integral Equation in Adsorption from Binary Liquid
Miztures

If the distribution of the adsorption sites is such that the sumation
(14) can be replaced by integration, we obtain

9381,; = “ x‘i (012, E19) Gho (Hy, ) dEy dE, (16)
Ay

where M G5 (E;, Es) dE; dE, denotes the number of sites with values of
adsorption energies from two-dimensional region (&, Ej + d#;) x
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X (By, By +dEs)ie., Gy is two-dimensional energy distribution norma-
lized to unity:

” Gio (Ey, Bp)dE dB, = 1 (17)
Agp
Ap is the two-dimensional integration region.

Eq. (16) may be presented in a more general form

xi,t (0/1, a’Z) =

= “ 23 (ay, ao, B, By) Grp (Er, By) dE; dE, (18)
Ayp
where z] (a;, 0y, B, 5;) is the individual isotherm describing adsorption
of binary liquid mixtures on adsorption sites having energies £; and E,.
Eq. (18) can be used to describe the adsorption of binary liquid
mixtures on heterogeneous surfaces which have arbitrarily distributed
adsorption sites on the surface (patchwise or randomly), if for z] and
adsorption isotherm derived for homogeneous surface without inter-
actions between molecules in the adsorbed phase is assumed.
The excess adsorption isotherm for the whole surface n], is also
expressed in integral form, because both terms of this quar{tity are
additive ones. Thus

ni![ = j‘j‘ ni G12 dEl dEz = j’j‘ (Q’,’i*xl) GIZ dE]_ dEg = xi’t”“xl (19)
AIZ AI'Z

Integral Representation of the Adsorption Isotherm Without Inleractions
o the Adsorbed Phase

Adsorption from binary liquid mixtures on heterogeneous surfaces,
neglecting the interactions between molecules in the adsorbed phase,
may be described by a slightly different integral equation.

In this case the local adsorption isotherms (14) or (17) are functions
of the difference of adsorption energies Kyp. Let H (E},) be distribution
function normalized to unity:

§ H (Byp)dEy; = 1 (20)
Q

where Q is the range of possible variation of Ej,. Then, adsorption
isotherms 1, and n{, may be expressed by:

9581,; (a19) = jxi (012, Bro) H(Eqp) d By (21)
Q
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or

"i,t(%z) = In‘i (19, B1o) H (Bp) dEyp (22)
Q
In the papers!2—18, Eqs. (21) and (22) are used to derive the analytical
equations for adsorption isotherms of binary liquid mixtures by using
different distributions. In these papers Eq. (4) was applied for the local
adsorption isotherm. Numerical studies of Eqgs. (21) and (22) showed
that these equations described the experimental data considerably
better than equations suitable for homogeneous surfaces.
Eqgs. (21) and (22) can be obtained from suitable Eqs. (18) and (19).
For this purpose let us consider the following transformation of the
variables B, and Fy:

EQ = EZ and E12 = El'sz (23)
Then, from Eq. (18) we obtain

i (a1s) = in (012, Eys) l:f Go (g, By + Ez)dE2] dE,,  (24)
Q A,

where A, is one-dimensional integration region for E.

Defining the distribution function H (£y5) by the following ex-
pression

H (Eyp) = [ Gio(Bo, Eys + Es)dE, (25)
Ay
we obtain Eq. (21). In a similar way Eq. (22) may be derived.

Differential Adsorption Heat for Binary Liquid Mixtures

According to Kiselev and Pavlova! the following definition may be
written for differential adsorption heats of binary liquid mixtures:

. Olnx

dif _ 12 :|

e (26)
= [a (1/kpT) 12

for the local adsorption heat, and

. Olnz

dif _LJ 27)
” [au/kBT) 2,

for overall adsorption heat.
To calculate Q‘f;f we propose the modification of Van Dongen’s
method for adsorption from liquid mixtures?s.
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Differentiating Eq. (21) with respect to (1/kT') at constant z7 , we
obtain

dxy
e H{(E)dE, =0 28
”rﬁwwjx; (Big) dBy (28)
9 :
The local isotherm x], expressed by Eq. (7), is the function zy,, £5 and
T. Then
4z = | -2 } dinay, +
x| = n .
! aln X9 T Y12
+{ 0y } d(1/k5T) (29)
A kgT) by,

For z] = const, from Eq. (29) we obtain

; daf 0]
gl L] w
(l/kBT) 419 5 In T2 T

However, for x{, = const from Eq. (29) we have

E 0x| dif Ox}
- - || -
(l/kBT) xit 5 ln 12 T 6 (1/KBT) 19

. . ox
= (@ — Q¥ [ o ] 31)
T

6 In Z19

Substitution of Eq. (31) to (28) leads to the following expression

6 ln X1
Qi = (32)

0|
a1 H (E15)dEy,
N¥g T

Q

dif kS
q13 (Bg, 219, T') TH (Erp) dEyp

Calculation of ¢%4 for the adsorption isotherm (4) leads to the expression

) oK dlnA
q‘fi{=[~————“ } S B (33)
0 (1ksT) 1o aT

Assuming temperature independence of 45 (A, is often assumed to be
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66 M. Boréwko el al.:

unity), Eq. (33) is reduced to a very simple form:

q¢{] = By (34)

Applying a similar method to that presented above it is possible to
express the adsorption heat Q% by means of Gy,:

dif 0
7 Gha (B, Ey)dE, dEy
‘ Olnzyp |

ol = 4 .
ox;
” [aln; ]TGH(EI:Ez)dEldEZ
LA 12
AlZ

It is easy to prove that Eq. (32) is a special case of Eq. (35).

Adsorption from n-Component Liquid Mixtures on Solid Surfaces

Most papers on adsorption from liquid mixtures concern binary
solutions. Mainly the studies of Griazev and Kiselev?$, Odcik27-31 and
Minka and Myers3® concern the adsorption from multicomponent
liquid mixtures on homogeneous surfaces, especially the adsorption
from ternary liquid mixtures. These theoretical results were next used
to interpret the experimental data obtained by liquid chromato-
graphy.

In this section, the results obtained for adsorption from binary
liguid mixtures will be generalized for adsorption from n-component
liquid mixtures on homogeneous and heterogeneous solid surfaces.

In the case of adsorption from n-component liquid mixtures on
homogeneous surface the canonical partition function may be ex-
pressed in the form:

Q=

M) n-1
Hqivl] guM— 2 N, (36)

(e

=1

where

S
I
M=

N, = const (37)

o~
I
ot
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The difference of chemical potentials p} is equal to

s s . 0lngQ
e = M = RpT | =
v k/ MT Ny
= kI for k=12, (38)
<MA Z Nl)Qk
I=1

At equilibrium, the difference of chemical potentials for the k-th and
n-th components is equal to difference of chemical potentials of these
components in the bulk phase.

Eq. (38) gives the following expressions for

K., a
pi= R vk =1,2,...,n—1 (39)
k n-1
1 + Z Klnaln
=1
and
) Kinx
v = fork=1,2,..,n—1 (40)
n
1+ Z Ky,
=1
where

p = Np/M and Kpy = (qx/gn) exp <;:'m> (41)
BT
Egs. (39) and (40) determine the mole fraction of the k-th com-
ponent in the n-component adsorbed phase. The excess of the %-th
component in the adsorbed phase may be calculated by means of the
well-known relation32:

n, =a,—x fork=1,2,.. . ,n—1 (42)
In the case of adsorption from n-component liquid mixtures on

heterogeneous surfaces the canonical partition function assumes the
following form:

M,
QZVIJNZJ' . .Nﬂ,,i = H n—1 : n—1
' <H Nl,i!) <Mi > Nl,i>!
=1 =1

-1 n—l
Ny M — .
[H ql,i’l’l:l QWML,L ; ngt, (43)
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where the vector i= (¢1,%,...,4,) characterizes an adsorption site
n
having adsorption energies €; = (K, B 45, ..., By 5,); M= Y Nyiis

=1
the total number of adsorption sites characterized by vector i; N;;is the
number of molecules of the I-th component adsorbed on the adsorption

sites of the adsorption sites of the i-th kind; M =) M; is the total

1

number of the adsorption sites on the whole surface and Ny = )" N ;is

1
the number of molecules of the [-th component adsorbed on the whole
surface.
Let p; ; denote the chemical potential for the k-th component on the
adsorptioﬁ sites of the i-th kind. Thus, the difference of chemical
potentials pj ; and y; ; is given by:

Jln Q:|
ONy; T M N s

Ui i = — k5T [

Ng.idn,ip

n—1
<Mi4 Z Nl,i) Ak,iy;

=1

= kyTn (44)

At equilibrium, the expression for x;, is analogous to that in (39):

K, :a
Bh= e for k= 1,2,.. ,n—1 (45)

1+ Z Kln,ialn
=1

where

s s P«IOm
Kini= 1/%ni,) €xp (chT) (46)

As n-dimensional vector € determines an adsorption site, energy
distribution characterizing the global adsorbent heterogeneity should
be n-dimensional function, i.e., @, (€). Then, the mole fraction of the
k-th component calculated with regard to the whole adsorbent surface
is given by:

2, = f 2 (0, €) 0, () dG )

Ay



Statistical Thermodynamics 69

where zj is the local adsorption isotherm, A, is the n-dimensional
integration region and a = (ay,as,...,a,). For z} Eq. (43) may be
assumed.

The adsorption from solution has competitive character, i.e., differ-
ences between adsorption energies play an important role in this
process. Because the adsorption isotherm « (a, €) is the function of the

n-1 variables By, (¢ =1,2,...,n—1); introducing a new distribution
function
H(ElnvEva-- ~En~-1n) = j Gﬂ(En:Eln + En, EZn + En: . )dEn (48)
A?Z
we obtaln
x(}i:t = j x;(al'm Aos - > Ot Borns Bans - o, Bpan) X
A%
x H (Eln: EZn: BT EnAln) dEln dEZn . ~dEn~ln (49)

The symbol A, denotes the region of possible variations of & whereas
A*, 1s the (n—1)-dimensional integration region.

Generalizing the above considerations it can be stated that we
characterize heterogeneity of the adsorbent surface in the case of
adsorption from solutions by means of energy differences of the
particular components with respect to the chosen component (e.g. n-th
component) bringing, purely formally, the description method of
adsorption from (n—1)-component gas mixture.

Conclusions

Both, excess and individual adsorption isotherms from ideal and
slightly nonideal multicomponent liquid mixtures on heterogeneous
surfaces may be represented by means of multiple integrals. This form
of adsorption isotherm is a general one and it may be used for different
models of heterogeneous surfaces if the interactions between molecules
adsorbed are neglected, or for patchwise heterogeneous surfaces if the
interactions in the adsorbed phase are taken into account. The
heterogeneity of the adsorbent surface is characterized by an n-
dimensional energy distribution.

The alternative equation describing the adsorption from multicom-
ponent liquid mixtures on heterogeneous surfaces is based on the
distribution function of the differences of adsorption energies. In the
method surface heterogeneity is characterized with respect to the
differences of adsorption energies.

Therefore, the local adsorption isotherm should be the function of
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the differences of adsorption energies only. This condition is satisfied by
the most popular equations, which are used in the theory of liquid
mixture adsorption on homogeneous surfaces?.

Starting from the canonical partition function for completely filled
adsorption phase on heterogeneous surface (8), the integral adsorption
isotherms (18) and (19), and differential adsorption heat (32) are
obtained. Using the well-known definition of thermodynamic functions
by means of the canonical partition function the Helmholtz free energy
and entropy for adsorption of multicomponent liquid mixtures on
heterogeneous surfaces can be easily obtained.
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