
Monatshefte ffir Chemic 112, 59--71 (1981) Menatshefle for Cbemie 
�9 by Springer-Verlag 1981 

Statistical Thermodynamics of Adsorption from Multicom- 
ponent Liquid Mixtures on Heterogeneous Solid Surfaces 

Mal-gorzata Bor6wko, Mieczys{aw Jaroniec*, 
and W]~adys]~aw Rudzifiski 

Department of Theoretical Chemistry, Institute of Chemistry~ 
MCS University, 20031 Lublin, Poland 

(Received 30 2v'ovember 1979. Accepted 29 February 1980) 

The statistical thermodynamics of adsorption from multicomponent liquid 
mixtures on heterogeneous solid surfaces is discussed by assuming the cell 
adsorption model and ideal adsorbed phase. 

Two integral representations for the adsorption isotherm are proposed : one 
based on n-dimensional energy distribution function (i.e., each adsorption site 
is characterized by adsorption energies of all components), and the other based 
on distribution of differences of adsorption energies of n-1 components in 
relation to adsorption energy of the chosen component (i.e., each adsorption 
site is characterized by n-1 differences of adsorption energies of the components 
in relation to adsorption energy of the chosen component). 

The expressions for differential adsorption heat for adsorption from binary 
liquid mixtures have been derived from both integral equations. 

(Keywords: Adsorption frost solutions; Adsorption on heterogeneous surface; 
Statistical thermodynamics) 

Statistische Thermodynamik der Adsorption aus fliissigen Mehrkomponenten- 
mischungen auf heterogenen festen Oberfl~ichen 

Die statistische Thermodynamik der Adsorption yon aus mehreren Kom- 
ponenten bestehenden flfissigen Misehungen auf heterogenen festen Ober- 
fl~chen wird ffir das Modell der Zellenadsorption bei ideal adsorbierter Phase 
diskutiert. 

Zwei Integraldarstellungen der Adsorptionsisotherme werden vorgeschla- 
ten: eine auf eine n-dimensionale Verteilungsfunktion der Energie gesttitzte 
(das heigt, jede Adsorptionsstelle wird dutch Adsorptionsenergien yon allen 
Komponenten charakterisiert); die andere basiert auf der Verteilung der 
Untersehiede yon Adsorptionsenergien der n-- l -Komponenten in bezug auf die 
Adsorptionsenergie der ausgew~hlten Komponente (das heigtt, jede Adsorp- 
tionsstelle wird dureh n--l-Untersehiede charakterisiert. Formeln ffir differen- 
tiale Adsorpfionsw/~rmen ffir die Adsorption aus bingren fltissigen Misehungen 
sind yon beiden Integral-Gleichungen abgeleitet worden. 
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Introduction 

In the majori ty of the theoretical papers concerning adsorption 
from liquid mixtures, homogeneity of the adsorbent surface has been 
assumed. Also the classical 1-5 and statistical 6-9 thermodynamics of 
adsorption from solution was formulated for homogeneous adsorbentes. 

Numerous experimental10,11 and theoreticaP 2-1s studies have 
shown tha t  heterogeneity effects play an important  role in adsorption 
from liquid mixtures. Delmas and Patterson 19, Si~kova and ErdSs 2o, 21 
saw in the surface heterogeneity of the adsorbent a source of imperfec- 
tion of surface phase. They suggested that  the change of the sign of the 
excess adsorption isotherm should be associated with surface hetero- 
geneity. Theoretical description of adsorption from binary liquid 
mixtures on heterogeneous surface, presented in the papers t2-1s, bases 
on an integral equation for the excess or individual adsorption isotherm 
which was similar to the fundamental  integral equation used in the 
theory of gas adsorption. 

In this paper, the integral equation will be discussed in detail in 
terms of the statistical thermodynamics.  Also, the differential heat for 
adsorption of binary mixtures on heterogeneous surfaces will be 
derived. The starting point of these considerations is the paper of Sircar 
and Myers  7, which deals with statistical thermodynamics of adsorption 
from liquid mixtures on homogeneous surfaces. Similarly as Sircar and 
Myers  7 we assume the cell model for adsorption of binary liquid 
mixtures on solids and ideality of the adsorbed phase. 

Results and Discussion 

Adsorption f rom Binary  Liquid Mixtures  on Solid Surfaces 

The canonical parti t ion function for two-component adsorbed phase 
on a homogeneous surface may be written as follows7 : 

MI 
Q -  ul u2 (1) 

N 1 ! ( M  - -  ~V 1) ! 

where 

and 

M = Nl  + Nu = const 

(2) 

(3) 

In the above equations M is constant and it denotes the total number of 
molecules in the adsorbed phase ; Ne is the number of molecules of the 
k-th component in the adsorbed phase ; E k and Jk are adsorption energy 
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and part i t ion function of the isolated adsorbed molecule of the k-th 
component,  respectively; k~ is the Boltzman constant, and T is the 
absolute temperature.  Eq. (1) refers to liquid mixtures composed from 
molecules of equal sizes. 

At equilibrium the difference of chemical potentials in the adsorbed 
phase is equal to the difference of chemical potentials in the bulk phase. 
Taking into account this condition and calculating from Eq. (1) the 
difference of chemical potentials in the adsorbed phase, we obtain 

t~12 a12 ~] - ( 4 )  

1 + K12 a12 

where 

and 

 =A12exp( 12  K12 = q12 exp \ k B  T /  \k B T /  (5) 

Als = Jls exp \ k B  T /  (6) 

In the above a12 = al/a s is the ratio of activities al and a2, x~. is the mole 
fraction of the i-th component in the adsorbed phase, qls = ql/qe, 
J12 = J1/Js and f~e is the difference of the standard chemical potentials 
in the bulk solution. I f  the activity eoefficientsf~ = 1 (k = 1,2), Eq. (4) 
assumes the well-known form: 

K12x]2 
8 - -  x 1 (7) 

1 + K12 x12 

where x12 = x l /x  2 is the ratio of mole fractions of both components in 
the bulk phase. 

In the general theory of adsorption of binary mixtures on heteroge- 
neous surface, each adsorption site is unambiguously characterized by 
two energies: El,ij and E2,ij22. 

Let  M~j = MI,~j + Ms,ij denote the number of the sites having the 

adsorption energies El,13" and Es,ij-, and ~ M~3- = N1 + N2 = M is num- 
ij 

ber of molecules in the adsorbed phase, which assumed to be constant. 
Moreover Nl,ij and N2,i] are assumed to be large numbers. For  any 
distribution N1,~3., Ns,~j among M~j. we have 23,s4 

Q~I,~j~'2,~ = 

~ij M~j ! ,~N~,lj qM~j--NI,ij 
= .. N1,~3! ( M i j - - N I , , j ) !  ~1,i 2j (8) 
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where 

q~,r = J~ (T) exp \ ]@T)  (9) 

for k = 1, 2 and r = i,j, respectively. 
The total :partition function Q is the sum of the p~rtition functions 

Q~%~jN2,ij. Repiacing this sum by the maximum term 23, we can express 
the difference of chemical potentials of both components ~2,ij for 
molecules occuping adsorption sites Mij as follows: 

tff12,ij _ ( 81nQ ~ N l , i j q 2 , j  
\~/M~j,,. ~ = In (lO) 

kBT 

At equilibrium, i.e., when ~]2,ij = ~12, we obtain 

K12,ij a12 
- ( 1 1 )  

Xl'v 1 -4- K12,ija12 

where 

x~,ij = NI,~/N2,~j 

and 

K12,ij = (ql,i/q2j) exp \]CBT) 

(El,_/-- E2,j~ = A1 ~ exp (E12"iJ~ 
= A 1 2 e x p \  k BT ) \ k S T /  

For the whole adsorbent surface we get 

(12) 

(13) 

s = N 1 / M  = E N I , f j / M  = E ~ i J  ~ i , i j  (14) Xl,t 
ij ij 

where 

g~j = M~/M (15) 

8 8 ~ 1. and Xl, t + X2, t 

Generalized Integral Equation in Adsorption from Binary Liquid 
Mixtures 

I f  the distribution of the adsorption sites is such that  the sumation 
(14) can be replaced by integration, we obtain 

Xl, t = 55 X I (a12 , El2  ) G12 (E l ,  E 2 ) d E  1 d E  2 (16) 

A12 

where M G12 (El, E2) dE1 dE2 denotes the number of sites with values of 
adsorption energies from two-dimensional region (El, E 1 + d E 1 ) •  
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x (E2, E 2 + dE2) i.e., G12 is two-dimensional energy distribution norma- 
lized to unity:  

~S G12 (El, E2) dE1 dE2 = 1 (17) 

A12 
AI~ is the two-dimensional integration region. 

Eq. (16) may be presented in a. more general form 

xsi,t (al, az) = 

= ~ x~ (al, a2, El, E2) G12 (El, E2) dE 1 dE 2 (18) 
A12 

where x] (al, a2,E1,E2) is the individual isotherm describing adsorption 
of binary liquid mixtures on adsorption sites having energies E 1 and E2. 
Eq. (18) can be used to describe the adsorption of binary liquid 
mixtures on heterogeneous surfaces which have arbitrarily distributed 
adsorption sites on the surface (patchwise or randomly), if for x] and 
adsorption isotherm derived for homogeneous surface without inter- 
actions between molecules in the adsorbed phase is assumed. 

The excess adsorption isotherm for the whole surface hi, t is also 
expressed in integral form, because both terms of this quanti ty are 
additive ones. Thus 

hi, t = ~ n]G12 dE1 dE2 -- ~ (x]--Xl)G12 dE1 dE2 = x],t--xl 
A12 Am 

(19) 

Integral Representation of the Adsorption Isotherm Without Interactions 
in the Adsorbed Phase 

Adsorption from binary liquid mixtures on heterogeneous surfaces, 
neglecting the interactions between molecules in the adsorbed phase, 
may be described by a slightly different integral equation. 

In this case the local adsorption isotherms (14) or (17) are functions 
of the difference of adsorption energies EI~. Let H (E12) be distribution 
function normalized to unity:  

H (E12) dElu = 1 (20) 
D 

where f~ is the range of possible variation of E12. Then, adsorption 
isotherms x], t and neLt may be expressed by: 

x],t (al~l: = S x] (al~, E12) H(EI~) dE12 (21) 
f~ 
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or 

n], t (a12) ~--- S n] (a12 , El2 ) H (E12) dE12 (22) 

In the papers 12-18, Eqs. (21) and (22) are used to derive the analytical 
equations for adsorption isotherms of binary liquid mixtures by using 
different distributions. In these papers Eq. (4) was applied for the local 
adsorption isotherm. Numerical studies of Eqs. (21) and (22) showed 
tha t  these equations described the experimental data  considerably 
better than equations suitable for homogeneous surfaces. 

Eqs. (21) and (22) can be obtained from suitable Eqs. (18) and (19). 
For this purpose let us consider the following transformation of the 
variables E 1 and E~: 

E 2 = E 2 and El2 = E l - - E 2  (23) 

Then, from Eq. (18) we obtain 

fi A 2 

where A 2 is one-dimensional integration region for E~. 

Defining the distribution function H (E12) by the following ex- 
pression 

H (El2) = S G12 (E2, El2 + E2) dEe 
A2 

we obtain Eq. (21)�9 In a similar way Eq. (22) may be derived. 

(25) 

Differential Adsorption Heat for Binary Liquid Mixtures 

According to Kiselev and Pavlova 1 the following definition may be 
written for differential adsorption heats of binary liquid mixtures : 

�9 = [ O-lnxl2 ~ (26) qdl~ 
--L ~ (1/k.T)_]x~ 

for the local adsorption heat, and 

QdiS__I  lnx,2 (27) 
12 -- O(1/kBT)jx~, t 

for overall adsorption heat. 
odif To calculate ~r we propose the modification of Van Dongen's 

method for adsorption from liquid mixtures u5. 
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Differentiating Eq. (21) with respect to (1/kBT) at constant x'[l, we 
obtain 

rrl, O_zl 1 H(Em) dE12=O (28) 
JL 

The local isotherm x~, expressed by Eq. (7), is the function x12, El2 and 
T. Then 

d x ; = [  0X; ] dlnx12+ 
L a In xmJ T 

+ I - ~?x~ ] d(1/kBT) (29) 
(1/kBT)-Jx12 

For x~ = const, from Eq. (29) we obtain 

[0 (1/kBT)J "12 / [ c9 In xl2JT 

However, for x~, t = const from Eq. (29) we have 

f ] = V ~ , -I ,~if+L. = 

L(1/lcBT)Jx~,t - L  o~ x~ J  T ~ ' '  a (1/KBT)Jx~2 

= ( .~s_~s ,  [ ~xl ] (31) 
uv2 ~12/L 01nxmjT 

Substitution of Eq. (31) to (28) leads to the following expression 

fq/d1~f(z12,x12, T ) [ ~Xl ] H(E12)dE12 
L (? In Xlu J T 

QeiI 
12 --= 

L 0 in xmJ T 
1l 

(32) 

Cale~alat, ion of q~f for the adsorption isotherm (4) leads to the expression 

�9 [ ~K12 ] = ~lnA12 
~dl~ = ~ ~ ( ~ / ~ J ) - l x l  --kBT~ 0 ~  + E~ (33) 

Assuming temperature independence of A12 (Am is often assumed to be 

5 Monatshefte ftir Chemic, Vol. 112/1 
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unity), Eq. (33) is reduced to a very simple form: 

q~  = E12 (34) 

Applying a similar method to that presented above it is possible to 
express the adsorption heat ,qdif 1.. 12 ~ J  means of G12 

di a x] 
f f %if2 I O~n x12] T G12 (El' E~) dEl dE2 

Qdi/_ ~ (35) 
12 - -  

if[ [_ ~ In xl~] T G12 (El, E2) dE1 dE2 

A12 

It  is easy to prove that Eq. (32) is a special case of Eq. (35). 

Adsorption from n-Component Liquid Mixtures on Solid Surfaces 

Most papers on adsorption from liquid mixtures concern binary 
solutions. Mainly the studies of Griazev and Kiselev 26, Ogcik 27-sl and 
Minka and Myers a2 concern the adsorption from multicomponent 
liquid mixtures on homogeneous surfaces, especially the adsorption 
from ternary liquid mixtures. These theoretical results were next used 
to interpret the experimental data obtained by liquid chromato- 
graphy 3a. 

In this section, the results obtained for adsorption from binary 
liquid mixtures will be generalized for adsorption from n-component 
liquid mixtures on homogeneous and heterogeneous solid surfaces. 

In the case of adsorption from n-component liquid mixtures on 
homogeneous surface the canonical partition function may be ex- 
pressed in the form: 

Q = n-1 n-1 q l qn M -  ~ Nt 
, 

where 

n 

M = ~" Nt = const 
/=1 

(36) 

(37) 
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The difference of ehemicM potentials ~ is equal to 

~ k - - ~ ,  = Y-~n = kBT \ O N~ ] M,T,NI+ ~ = 

Nk qn 
= k B T l n (  n_1 ) ; for k = l , 2 , . . . , n - - 1  

M - -  l~l q~ 

(38) 

At equilibrium, the difference of chemical potentials for the k-th and 
n-th components  is equal to difference of chemical potentials of these 
components  in the bulk phase. 

8. Eq. (38) gives the following expressions for x#. 

K ]cn a~cn 
x~ = n 1 for k = 1 , 2 , . . . , n - - 1  (39) 

1 + 2 Kln aln 
/=1 

and 

where 

Kkn xlcn 
x~ * = n for k = l, 2, .. ., n - -1  (40) 

1 + ~ Kln Xln 
l=l 

= Nk/M and K~n = (qk/qn) exp \ k B T /  X k (4~) 

Eqs. (39) and (40) determine the mole fraction of the k-th com- 
ponent  in the n-component  adsorbed phase. The excess of the k-th 
component  in the adsorbed phase may  be calculated by means of the 
well-known relation32 : 

n~e = x - - x  k s  ' for k =  1 , 2 , . . . , n - - 1  (42) 

In  the case of adsorption from n-component  liquid mixtures on 
heterogeneous surfaces the canonical part i t ion function assumes the 
following form : 

QN~,iN2,i...N~,~ = I~ n-1 n-1 

n - 1  .Yl--  ~ N I ,  i 
q 4 q,G~ 

_ /=1 
(43) 

5* 
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where the vector i = (il, ie , . . . , in)  characterizes an adsorption site 
n 

having adsorption energies ~i = (El'j1, E2,i2 . . . . .  E n , i n )  ; .L~ i = ~ N1, i is 
l = 1  

the total number of adsorption sites characterized by vector i ; Nl, i is the 
number of molecules of the l-th component adsorbed on the adsorption 

sites of the adsorption sites of the i-th kind; M = ~M~ is the total 

number of the adsorption sites on the whole surface and N1 = ~ Nl,i is 
i 

the number of molecules of the l-th component adsorbed on the whole 
surface. 

Let  ~,i  denote the chemical potential for the k-th component on the 
adsorption sites of the i-th kind. Thus, the difference of chemical 
potentials ~,i and ~,,. is given by: 

: 

~zk, i -  ~Xn, i = __ kBT [ _ ~ J T , M i , N l , i (  ~ 
k) 

= keTln  , N~ iqn,% 
(M~__ i~=i Nl,i)qlc,i k (44) 

At equilibrium, the expression for x~, is analogous to tha t  in (39): 

Kk~'ia~n for k = 1,2, . n - -1  (45) 
X k , t  ~--- n - 1  " "~ 

1 + 2 Kln,ialn 
l 1 

where 

Kkn,i = (qk #jqni n) exp ~kn 
, , \ kBT  ] 

(46) 

As n-dimensional vector ~ determines an adsorption site, energy 
distribution characterizing the global adsorbent heterogeneity should 
be n-dimensional function, i.e., G n (~). Then, the mole fraction of the 
k-th component calculated with regard to the whole adsorbent surface 
is given by: 

x~, t = ~ x~ (a, ~) G~ (~) d@ (47) 
Q /  

A n 
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where x~ is the local adsorption isotherm, h ,  is the n-dimensional 
integration region and a = (q ,ae  . . . .  ,an). For x~ Eq. (45) may be 
assumed. 

The adsorption from solution has competitive character, i.e., differ- 
ences between adsorption energies play an important  role in this 
process. Because the adsorption isotherm x~ (a, ~) is the function of the 
n-1 variables E~n (k = 1, 2 , . . . ,  n - - l ) ;  introducing a new distribution 
function 

H(Eln,E2n .... En-ln) = ~ Gn(En,Eln + En, E2n + En,. . ' . )dEn 

we obtain 

(4s) 

8 
X k , t  ~ ~ . . = X k ( a l n ,  a2n,  . , a n _ l n , E l n ,  E 2 n ,  . . . ,  E n - l n )  • 

A* 
X H ( E l n  , E 2 n  , . . . ,  E n _ l n  ) d E l n  dE2n..  �9 dEn-in (49) 

The symbol A, denotes the region of possible variations of ~ whereas 
A*~ is the (n--1)-dimensional integration region. 

Generalizing the above considerations it can be stated that  we 
characterize heterogeneity of the adsorbent surface in the ease of 
adsorption from solutions by means of energy differences of the 
particular components with respect to the chosen component (e.g. n-th 
component) bringing, purely formally, the description method of 
adsorption from ( ~ l ) - e o m p o n e n t  gas mixture. 

Conclusions 

Both, excess and individual adsorption isotherms from ideal and 
slightly nonideal mult ieomponent liquid mixtures on heterogeneous 
surfaces may be represented by means of multiple integrals. This form 
of adsorption isotherm is a general one and it may be used for different 
models of heterogeneous surfaces if the interactions between molecules 
adsorbed are neglected, or for patchwise heterogeneous surfaces if the 
interactions in the adsorbed phase are taken into account. The 
heterogeneity of the adsorbent surface is characterized by an n- 
dimensional energy distribution. 

The alternative equation describing the adsorption from multieom- 
ponent  liquid mixtures on heterogeneous surfaces is based on the 
distribution function of the differences of adsorption energies. In the 
method surface heterogeneity is characterized with respect to the 
differences of adsorption energies. 

Therefore, the local adsorption isotherm should be the function of 
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the differences of adsorption energies only. This condition is satisfied by 
the most  popular  equations, which are used in the theory of liquid 
mixture  adsorption on homogeneous surfaces 7. 

Start ing from the canonical part i t ion function for completely filled 
adsorption phase on heterogeneous surface (8), the integral adsorption 
isotherms (18) and (19), and differential adsorption heat  (32) are 
obtained. Using the well-known definition of thermodynamic  functions 
by means of the canonical part i t ion function the Helmhol t z  free energy 
and entropy for adsorption of mul t icomponent  liquid mixtures on 
heterogeneous surfaces can be easily obtained. 
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